mapie.conformity_scores
.BaseClassificationScore¶
- class mapie.conformity_scores.BaseClassificationScore[source]¶
Base conformity score class for classification task.
This class should not be used directly. Use derived classes instead.
- Attributes
- quantiles_: ArrayLike of shape (n_alpha)
The quantiles estimated from
get_sets
method.
- abstract get_conformity_score_quantiles(conformity_scores: ndarray[Any, dtype[_ScalarType_co]], alpha_np: ndarray[Any, dtype[_ScalarType_co]], estimator: EnsembleClassifier, **kwargs) ndarray[Any, dtype[_ScalarType_co]] [source]¶
Abstract method to get quantiles of the conformity scores.
This method should be implemented by any subclass of the current class.
- Parameters
- conformity_scores: NDArray of shape (n_samples,)
Conformity scores for each sample.
- alpha_np: NDArray of shape (n_alpha,)
NDArray of floats between 0 and 1, representing the uncertainty of the confidence set.
- estimator: EnsembleClassifier
Estimator that is fitted to predict y from X.
- Returns
- NDArray
Array of quantiles with respect to alpha_np.
- abstract get_prediction_sets(y_pred_proba: ndarray[Any, dtype[_ScalarType_co]], conformity_scores: ndarray[Any, dtype[_ScalarType_co]], alpha_np: ndarray[Any, dtype[_ScalarType_co]], estimator: EnsembleClassifier, **kwargs) ndarray[Any, dtype[_ScalarType_co]] [source]¶
Abstract method to generate prediction sets based on the probability predictions, the conformity scores and the uncertainty level.
This method should be implemented by any subclass of the current class.
- Parameters
- y_pred_proba: NDArray of shape (n_samples, n_classes)
Target prediction.
- conformity_scores: NDArray of shape (n_samples,)
Conformity scores for each sample.
- alpha_np: NDArray of shape (n_alpha,)
NDArray of floats between 0 and 1, representing the uncertainty of the confidence set.
- estimator: EnsembleClassifier
Estimator that is fitted to predict y from X.
- Returns
- NDArray
Array of quantiles with respect to alpha_np.
- abstract get_predictions(X: ndarray[Any, dtype[_ScalarType_co]], alpha_np: ndarray[Any, dtype[_ScalarType_co]], estimator: EnsembleClassifier, **kwargs) ndarray[Any, dtype[_ScalarType_co]] [source]¶
Abstract method to get predictions from an EnsembleClassifier.
This method should be implemented by any subclass of the current class.
- Parameters
- X: NDArray of shape (n_samples, n_features)
Observed feature values.
- alpha_np: NDArray of shape (n_alpha,)
NDArray of floats between
0
and1
, represents the uncertainty of the confidence set.- estimator: EnsembleClassifier
Estimator that is fitted to predict y from X.
- Returns
- NDArray
Array of predictions.
- get_sets(X: ndarray[Any, dtype[_ScalarType_co]], alpha_np: ndarray[Any, dtype[_ScalarType_co]], estimator: EnsembleClassifier, conformity_scores: ndarray[Any, dtype[_ScalarType_co]], **kwargs) ndarray[Any, dtype[_ScalarType_co]] [source]¶
Compute classes of the prediction sets from the observed values, the estimator of type
EnsembleClassifier
and the conformity scores.- Parameters
- X: NDArray of shape (n_samples, n_features)
Observed feature values.
- alpha_np: NDArray of shape (n_alpha,)
NDArray of floats between 0 and 1, representing the uncertainty of the confidence set.
- estimator: EnsembleClassifier
Estimator that is fitted to predict y from X.
- conformity_scores: NDArray of shape (n_samples,)
Conformity scores.
- Returns
- NDArray of shape (n_samples, n_classes, n_alpha)
Prediction sets (Booleans indicate whether classes are included).
- predict_set(X: ndarray[Any, dtype[_ScalarType_co]], alpha_np: ndarray[Any, dtype[_ScalarType_co]], **kwargs)[source]¶
Compute the prediction sets on new samples based on the uncertainty of the target confidence set.
- Parameters
- X: NDArray of shape (n_samples,)
The input data or samples for prediction.
- alpha_np: NDArray of shape (n_alpha, )
Represents the uncertainty of the confidence set to produce.
- **kwargs: dict
Additional keyword arguments.
- Returns
- The output structure depend on the
get_sets
method. The prediction sets for each sample and each alpha level.
- The output structure depend on the
- set_external_attributes(*, classes: Optional[Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]] = None, random_state: Optional[Union[int, RandomState]] = None, **kwargs) None [source]¶
Set attributes that are not provided by the user.
- Parameters
- classes: Optional[ArrayLike]
Names of the classes.
By default
None
.- random_state: Optional[Union[int, RandomState]]
Pseudo random number generator state.