Tutorial for regression¶
In this tutorial, we compare the prediction intervals estimated by MAPIE on a simple, one-dimensional, ground truth function
Throughout this tutorial, we will answer the following questions:
How well do the MAPIE strategies capture the aleatoric uncertainty existing in the data?
How do the prediction intervals estimated by the resampling strategies evolve for new out-of-distribution data?
How do the prediction intervals vary between regressor models?
Throughout this tutorial, we estimate the prediction intervals first using a polynomial function, and then using a boosting model, and a simple neural network.
For practical problems, we advise using the faster CV+ strategies. For conservative prediction interval estimates, you can alternatively use the CV-minmax strategies.
1. Estimating the aleatoric uncertainty of homoscedastic noisy data¶
Let’s start by defining the function and
another simple function that generates one-dimensional data with normal
noise uniformely in a given interval.
import numpy as np
def x_sinx(x):
"""One-dimensional x*sin(x) function."""
return x*np.sin(x)
def get_1d_data_with_constant_noise(funct, min_x, max_x, n_samples, noise):
"""
Generate 1D noisy data uniformely from the given function
and standard deviation for the noise.
"""
np.random.seed(59)
X_train = np.linspace(min_x, max_x, n_samples)
np.random.shuffle(X_train)
X_test = np.linspace(min_x, max_x, n_samples*5)
y_train, y_mesh, y_test = funct(X_train), funct(X_test), funct(X_test)
y_train += np.random.normal(0, noise, y_train.shape[0])
y_test += np.random.normal(0, noise, y_test.shape[0])
return X_train.reshape(-1, 1), y_train, X_test.reshape(-1, 1), y_test, y_mesh
We first generate noisy one-dimensional data uniformely on an interval.
Here, the noise is considered as homoscedastic, since it remains
constant over .
min_x, max_x, n_samples, noise = -5, 5, 100, 0.5
X_train, y_train, X_test, y_test, y_mesh = get_1d_data_with_constant_noise(
x_sinx, min_x, max_x, n_samples, noise
)
Let’s visualize our noisy function.
import matplotlib.pyplot as plt
plt.xlabel("x") ; plt.ylabel("y")
plt.scatter(X_train, y_train, color="C0")
_ = plt.plot(X_test, y_mesh, color="C1")

As mentioned previously, we fit our training data with a simple
polynomial function. Here, we choose a degree equal to 10 so the
function is able to perfectly fit .
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
from sklearn.pipeline import Pipeline
degree_polyn = 10
polyn_model = Pipeline(
[
("poly", PolynomialFeatures(degree=degree_polyn)),
("linear", LinearRegression())
]
)
We then estimate the prediction intervals for all the strategies very
easily with a fit
and predict
process. The prediction interval’s
lower and upper bounds are then saved in a DataFrame. Here, we set an
alpha value of 0.05 in order to obtain a 95% confidence for our
prediction intervals.
from typing import Union
from typing_extensions import TypedDict
from mapie.regression import MapieRegressor
from mapie.subsample import Subsample
Params = TypedDict("Params", {"method": str, "cv": Union[int, Subsample]})
STRATEGIES = {
"naive": Params(method="naive"),
"jackknife": Params(method="base", cv=-1),
"jackknife_plus": Params(method="plus", cv=-1),
"jackknife_minmax": Params(method="minmax", cv=-1),
"cv": Params(method="base", cv=10),
"cv_plus": Params(method="plus", cv=10),
"cv_minmax": Params(method="minmax", cv=10),
"jackknife_plus_ab": Params(method="plus", cv=Subsample(n_resamplings=50)),
"jackknife_minmax_ab": Params(method="minmax", cv=Subsample(n_resamplings=50)),
}
y_pred, y_pis = {}, {}
for strategy, params in STRATEGIES.items():
mapie = MapieRegressor(polyn_model, **params)
mapie.fit(X_train, y_train)
y_pred[strategy], y_pis[strategy] = mapie.predict(X_test, alpha=0.05)
Let’s now compare the confidence intervals with the predicted intervals
with obtained by the Jackknife+, Jackknife-minmax, CV+, CV-minmax,
Jackknife+-after-Boostrap, and Jackknife-minmax-after-Bootstrap
strategies. Note that for the Jackknife-after-Bootstrap method, we call
the :class:mapie.subsample.Subsample
object that allows us to train
bootstrapped models.
def plot_1d_data(
X_train,
y_train,
X_test,
y_test,
y_sigma,
y_pred,
y_pred_low,
y_pred_up,
ax=None,
title=None
):
ax.set_xlabel("x") ; ax.set_ylabel("y")
ax.fill_between(X_test, y_pred_low, y_pred_up, alpha=0.3)
ax.scatter(X_train, y_train, color="red", alpha=0.3, label="Training data")
ax.plot(X_test, y_test, color="gray", label="True confidence intervals")
ax.plot(X_test, y_test - y_sigma, color="gray", ls="--")
ax.plot(X_test, y_test + y_sigma, color="gray", ls="--")
ax.plot(X_test, y_pred, color="blue", alpha=0.5, label="Prediction intervals")
if title is not None:
ax.set_title(title)
ax.legend()
strategies = ["jackknife_plus", "jackknife_minmax" , "cv_plus", "cv_minmax", "jackknife_plus_ab", "jackknife_minmax_ab"]
n_figs = len(strategies)
fig, axs = plt.subplots(3, 2, figsize=(9, 13))
coords = [axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1], axs[2, 0], axs[2, 1]]
for strategy, coord in zip(strategies, coords):
plot_1d_data(
X_train.ravel(),
y_train.ravel(),
X_test.ravel(),
y_mesh.ravel(),
1.96*noise,
y_pred[strategy].ravel(),
y_pis[strategy][:, 0, 0].ravel(),
y_pis[strategy][:, 1, 0].ravel(),
ax=coord,
title=strategy
)

At first glance, the four strategies give similar results and the
prediction intervals are very close to the true confidence intervals.
Let’s confirm this by comparing the prediction interval widths over
between all strategies.
fig, ax = plt.subplots(1, 1, figsize=(7, 5))
ax.axhline(1.96*2*noise, ls="--", color="k", label="True width")
for strategy in STRATEGIES:
ax.plot(X_test, y_pis[strategy][:, 1, 0] - y_pis[strategy][:, 0, 0], label=strategy)
ax.set_xlabel("x")
ax.set_ylabel("Prediction Interval Width")
_ = ax.legend(fontsize=10, loc=[1, 0.4])

As expected, the prediction intervals estimated by the Naive method are slightly too narrow. The Jackknife, Jackknife+, CV, CV+, JaB, and J+aB give similar widths that are very close to the true width. On the other hand, the widths estimated by Jackknife-minmax and CV-minmax are slightly too wide. Note that the widths given by the Naive, Jackknife, and CV strategies are constant because there is a single model used for prediction, perturbed models are ignored at prediction time.
Let’s now compare the effective coverage, namely the fraction of test points whose true values lie within the prediction intervals, given by the different strategies.
import pandas as pd
from mapie.metrics import regression_coverage_score
pd.DataFrame([
[
regression_coverage_score(
y_test, y_pis[strategy][:, 0, 0], y_pis[strategy][:, 1, 0]
),
(
y_pis[strategy][:, 1, 0] - y_pis[strategy][:, 0, 0]
).mean()
] for strategy in STRATEGIES
], index=STRATEGIES, columns=["Coverage", "Width average"]).round(2)
Coverage | Width average | |
---|---|---|
naive | 0.94 | 2.00 |
jackknife | 0.97 | 2.38 |
jackknife_plus | 0.97 | 2.36 |
jackknife_minmax | 0.98 | 2.53 |
cv | 0.98 | 2.42 |
cv_plus | 0.97 | 2.34 |
cv_minmax | 0.98 | 2.62 |
jackknife_plus_ab | 0.98 | 2.40 |
jackknife_minmax_ab | 0.98 | 2.51 |
All strategies except the Naive one give effective coverage close to the expected 0.95 value (recall that alpha = 0.05), confirming the theoretical garantees.
2. Estimating the epistemic uncertainty of out-of-distribution data¶
Let’s now consider one-dimensional data without noise, but normally distributed. The goal is to explore how the prediction intervals evolve for new data that lie outside the distribution of the training data in order to see how the strategies can capture the epistemic uncertainty. For a comparison of the epistemic and aleatoric uncertainties, please have a look at this source.
Lets” start by generating and showing the data.
def get_1d_data_with_normal_distrib(funct, mu, sigma, n_samples, noise):
"""
Generate noisy 1D data with normal distribution from given function
and noise standard deviation.
"""
np.random.seed(59)
X_train = np.random.normal(mu, sigma, n_samples)
X_test = np.arange(mu-4*sigma, mu+4*sigma, sigma/20.)
y_train, y_mesh, y_test = funct(X_train), funct(X_test), funct(X_test)
y_train += np.random.normal(0, noise, y_train.shape[0])
y_test += np.random.normal(0, noise, y_test.shape[0])
return X_train.reshape(-1, 1), y_train, X_test.reshape(-1, 1), y_test, y_mesh
mu = 0 ; sigma = 2 ; n_samples = 300 ; noise = 0.
X_train, y_train, X_test, y_test, y_mesh = get_1d_data_with_normal_distrib(
x_sinx, mu, sigma, n_samples, noise
)
plt.xlabel("x") ; plt.ylabel("y")
plt.scatter(X_train, y_train, color="C0")
_ = plt.plot(X_test, y_test, color="C1")

As before, we estimate the prediction intervals using a polynomial function of degree 10 and show the results for the Jackknife+ and CV+ strategies.
Params = TypedDict("Params", {"method": str, "cv": Union[int, Subsample]})
STRATEGIES = {
"naive": Params(method="naive"),
"jackknife": Params(method="base", cv=-1),
"jackknife_plus": Params(method="plus", cv=-1),
"jackknife_minmax": Params(method="minmax", cv=-1),
"cv": Params(method="base", cv=10),
"cv_plus": Params(method="plus", cv=10),
"cv_minmax": Params(method="minmax", cv=10),
"jackknife_plus_ab": Params(method="plus", cv=Subsample(n_resamplings=50)),
"jackknife_minmax_ab": Params(method="minmax", cv=Subsample(n_resamplings=50)),
}
y_pred, y_pis = {}, {}
for strategy, params in STRATEGIES.items():
mapie = MapieRegressor(polyn_model, **params)
mapie.fit(X_train, y_train)
y_pred[strategy], y_pis[strategy] = mapie.predict(X_test, alpha=0.05)
strategies = ["jackknife_plus", "jackknife_minmax" , "cv_plus", "cv_minmax", "jackknife_plus_ab", "jackknife_minmax_ab"]
n_figs = len(strategies)
fig, axs = plt.subplots(3, 2, figsize=(9, 13))
coords = [axs[0, 0], axs[0, 1], axs[1, 0], axs[1, 1], axs[2, 0], axs[2, 1]]
for strategy, coord in zip(strategies, coords):
plot_1d_data(
X_train.ravel(),
y_train.ravel(),
X_test.ravel(),
y_mesh.ravel(),
1.96*noise,
y_pred[strategy].ravel(),
y_pis[strategy][:, 0, :].ravel(),
y_pis[strategy][:, 1, :].ravel(),
ax=coord,
title=strategy
)

At first glance, our polynomial function does not give accurate
predictions with respect to the true function when . The
prediction intervals estimated with the Jackknife+ do not seem to
increase significantly, unlike the CV+ method whose prediction intervals
capture a high uncertainty when
.
Let’s now compare the prediction interval widths between all strategies.
fig, ax = plt.subplots(1, 1, figsize=(7, 5))
ax.set_yscale("log")
for strategy in STRATEGIES:
ax.plot(X_test, y_pis[strategy][:, 1, 0] - y_pis[strategy][:, 0, 0], label=strategy)
ax.set_xlabel("x")
ax.set_ylabel("Prediction Interval Width")
ax.legend(fontsize=10, loc=[1, 0.4]);

The prediction interval widths start to increase exponentially for
for the Jackknife-minmax, CV+, and CV-minmax strategies.
On the other hand, the prediction intervals estimated by Jackknife+
remain roughly constant until
before increasing.
pd.DataFrame([
[
regression_coverage_score(
y_test, y_pis[strategy][:, 0, 0], y_pis[strategy][:, 1, 0]
),
(
y_pis[strategy][:, 1, 0] - y_pis[strategy][:, 0, 0]
).mean()
] for strategy in STRATEGIES
], index=STRATEGIES, columns=["Coverage", "Width average"]).round(3)
Coverage | Width average | |
---|---|---|
naive | 0.494 | 0.009 |
jackknife | 0.531 | 0.012 |
jackknife_plus | 0.531 | 0.037 |
jackknife_minmax | 0.856 | 9.785 |
cv | 0.519 | 0.011 |
cv_plus | 0.812 | 9.800 |
cv_minmax | 0.862 | 9.805 |
jackknife_plus_ab | 0.725 | 5.115 |
jackknife_minmax_ab | 0.869 | 12.618 |
In conclusion, the Jackknife-minmax, CV+, CV-minmax, or Jackknife-minmax-ab strategies are more conservative than the Jackknife+ strategy, and tend to result in more reliable coverages for out-of-distribution data. It is therefore advised to use the three former strategies for predictions with new out-of-distribution data. Note however that there are no theoretical guarantees on the coverage level for out-of-distribution data.
3. Estimating the uncertainty with different sklearn-compatible regressors¶
MAPIE can be used with any kind of sklearn-compatible regressor. Here, we illustrate this by comparing the prediction intervals estimated by the CV+ method using different models:
the same polynomial function as before.
a XGBoost model using the Scikit-learn API.
a simple neural network, a Multilayer Perceptron with three dense layers, using the KerasRegressor wrapper.
Once again, let’s use our noisy one-dimensional data obtained from a uniform distribution.
min_x, max_x, n_samples, noise = -5, 5, 100, 0.5
X_train, y_train, X_test, y_test, y_mesh = get_1d_data_with_constant_noise(
x_sinx, min_x, max_x, n_samples, noise
)
plt.xlabel("x") ; plt.ylabel("y")
plt.plot(X_test, y_mesh, color="C1")
_ = plt.scatter(X_train, y_train)

Let’s then define the models. The boosing model considers 100 shallow trees with a max depth of 2 while the Multilayer Perceptron has two hidden dense layers with 20 neurons each followed by a relu activation.
from tensorflow.keras import Sequential
from tensorflow.keras.layers import Dense
from scikeras.wrappers import KerasRegressor
def mlp():
"""
Two-layer MLP model
"""
model = Sequential([
Dense(units=20, input_shape=(1,), activation="relu"),
Dense(units=20, activation="relu"),
Dense(units=1)
])
return model
polyn_model = Pipeline(
[
("poly", PolynomialFeatures(degree=degree_polyn)),
("linear", LinearRegression(fit_intercept=False))
]
)
from xgboost import XGBRegressor
xgb_model = XGBRegressor(
max_depth=2,
n_estimators=100,
tree_method="hist",
random_state=59,
learning_rate=0.1,
verbosity=0,
nthread=-1
)
mlp_model = KerasRegressor(
build_fn=mlp,
epochs=500,
verbose=0
)
Let’s now use MAPIE to estimate the prediction intervals using the CV+ method and compare their prediction interval.
models = [polyn_model, xgb_model, mlp_model]
model_names = ["polyn", "xgb", "mlp"]
prediction_interval = {}
for name, model in zip(model_names, models):
mapie = MapieRegressor(model, method="plus", cv=5)
mapie.fit(X_train, y_train)
y_pred[name], y_pis[name] = mapie.predict(X_test, alpha=0.05)
fig, axs = plt.subplots(1, 3, figsize=(20, 6))
for name, ax in zip(model_names, axs):
plot_1d_data(
X_train.ravel(),
y_train.ravel(),
X_test.ravel(),
y_mesh.ravel(),
1.96*noise,
y_pred[name].ravel(),
y_pis[name][:, 0, 0].ravel(),
y_pis[name][:, 1, 0].ravel(),
ax=ax,
title=name
)

fig, ax = plt.subplots(1, 1, figsize=(7, 5))
for name in model_names:
ax.plot(X_test, y_pis[name][:, 1, 0] - y_pis[name][:, 0, 0])
ax.axhline(1.96*2*noise, ls="--", color="k")
ax.set_xlabel("x")
ax.set_ylabel("Prediction Interval Width")
ax.legend(model_names + ["True width"], fontsize=8);

As expected with the CV+ method, the prediction intervals are a bit
conservative since they are slightly wider than the true intervals.
However, the CV+ method on the three models gives very promising results
since the prediction intervals closely follow the true intervals with
.