mapie.metrics.classification
.classification_mean_width_score¶
- mapie.metrics.classification.classification_mean_width_score(y_pred_set: Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]]) float [source]¶
Mean width of prediction set output by
_MapieClassifier
.- Parameters
- y_pred_set: NDArray of shape (n_samples, n_class, n_confidence_level)
Prediction sets given by booleans of labels.
- Returns
- NDArray of shape (n_confidence_level,)
Mean width of the prediction sets for each confidence level.
Examples
>>> import numpy as np >>> from mapie.metrics.classification import classification_mean_width_score >>> y_pred_set = np.array([ ... [[False, False], [False, True], [True, True]], ... [[False, True], [True, False], [True, True]], ... [[True, False], [True, True], [True, False]], ... [[False, False], [True, True], [True, True]], ... [[True, True], [False, True], [True, False]] ... ]) >>> print(classification_mean_width_score(y_pred_set)) [2. 1.8]