mapie.metrics.regression
.regression_mean_width_score¶
- mapie.metrics.regression.regression_mean_width_score(y_intervals: ndarray[Any, dtype[_ScalarType_co]]) ndarray[Any, dtype[_ScalarType_co]] [source]¶
Effective mean width score obtained by the prediction intervals.
- Parameters
- y_intervals: NDArray of shape (n_samples, 2, n_confidence_level)
Lower and upper bound of prediction intervals with different confidence levels, given by the
predict_interval
method
- Returns
- NDArray of shape (n_confidence_level,)
Effective mean width of the prediction intervals for each confidence level.
Examples
>>> import numpy as np >>> from mapie.metrics.regression import regression_mean_width_score >>> y_intervals = np.array([[[4, 6, 8], [6, 9, 11]], ... [[9, 10, 11], [10, 12, 14]], ... [[8.5, 9.5, 10], [12.5, 12, 13]], ... [[7, 8, 9], [8.5, 9.5, 10]], ... [[5, 6, 7], [6.5, 8, 9]]]) >>> print(regression_mean_width_score(y_intervals)) [2. 2.2 2.4]