mapie.metrics
.expected_calibration_error¶
- mapie.metrics.expected_calibration_error(y_true: Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]], y_scores: Union[_SupportsArray[dtype[Any]], _NestedSequence[_SupportsArray[dtype[Any]]], bool, int, float, complex, str, bytes, _NestedSequence[Union[bool, int, float, complex, str, bytes]]], num_bins: int = 50, split_strategy: Optional[str] = None) float [source]¶
The expected calibration error, which is the difference between the confidence scores and accuracy per bin [1].
[1] Naeini, Mahdi Pakdaman, Gregory Cooper, and Milos Hauskrecht. “Obtaining well calibrated probabilities using bayesian binning.” Twenty-Ninth AAAI Conference on Artificial Intelligence. 2015.
- Parameters
- y_true: ArrayLike of shape (n_samples,)
The target values for the calibrator.
- y_score: ArrayLike of shape (n_samples,) or (n_samples, n_classes)
The predictions scores.
- num_bins: int
Number of bins to make the split in the y_score. The allowed values are num_bins above 0.
- split_strategy: str
The way of splitting the predictions into different bins. The allowed split strategies are “uniform”, “quantile” and “array split”.
- Returns
- ——-
- float
The score of ECE (Expected Calibration Error).