mapie.metrics
.kolmogorov_smirnov_cdf¶
- mapie.metrics.kolmogorov_smirnov_cdf(x: float) float [source]¶
Compute the Kolmogorov-smirnov cumulative distribution function (CDF) for the float x. This is interpreted as the CDF of the maximum absolute value of the standard Brownian motion over the unit interval [0, 1]. The function is approximated by its power series, truncated so as to hit machine precision error.
- Parameters
- xfloat
The float x to compute the cumulative distribution function on.
- Returns
- float
The Kolmogorov-smirnov cumulative distribution function.
References
Tygert M. Calibration of P-values for calibration and for deviation of a subpopulation from the full population. arXiv preprint arXiv:2202.00100. 2022 Jan 31.
D. A. Darling. A. J. F. Siegert. The First Passage Problem for a Continuous Markov Process. Ann. Math. Statist. 24 (4) 624 - 639, December, 1953.
Examples
>>> import numpy as np >>> from mapie.metrics import kolmogorov_smirnov_cdf >>> print(np.round(kolmogorov_smirnov_cdf(1), 4)) 0.3708